3.7.3 \(\int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx\) [603]

3.7.3.1 Optimal result
3.7.3.2 Mathematica [A] (verified)
3.7.3.3 Rubi [A] (verified)
3.7.3.4 Maple [B] (verified)
3.7.3.5 Fricas [F]
3.7.3.6 Sympy [F]
3.7.3.7 Maxima [F]
3.7.3.8 Giac [F(-1)]
3.7.3.9 Mupad [F(-1)]

3.7.3.1 Optimal result

Integrand size = 25, antiderivative size = 438 \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=-\frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b d}+\frac {\sqrt {a+b} (a+2 b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b d}+\frac {\sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d}+\frac {a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d} \]

output
1/4*a*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b/d/cos(d*x+c)^(1/2)+1/2*sin(d*x+c 
)*cos(d*x+c)^(1/2)*(a+b*cos(d*x+c))^(1/2)/d-1/4*(a-b)*cot(d*x+c)*EllipticE 
((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2)) 
*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2) 
/b/d+1/4*(a+2*b)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/c 
os(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b)) 
^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+1/4*(a^2-4*b^2)*cot(d*x+c)*Ellip 
ticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/ 
(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c)) 
/(a-b))^(1/2)/b^2/d
 
3.7.3.2 Mathematica [A] (verified)

Time = 7.18 (sec) , antiderivative size = 429, normalized size of antiderivative = 0.98 \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\frac {\sqrt {\cos (c+d x)} \left (4 (a+b \cos (c+d x)) \sin (c+d x)+\frac {2 a (a+b) \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+4 (a-2 b) b \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )-4 a^2 \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+16 b^2 \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+a b \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {3}{2} (c+d x)\right )+2 a^2 \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \tan \left (\frac {1}{2} (c+d x)\right )-a b \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \tan \left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}}}\right )}{8 d \sqrt {a+b \cos (c+d x)}} \]

input
Integrate[Cos[c + d*x]^(3/2)*Sqrt[a + b*Cos[c + d*x]],x]
 
output
(Sqrt[Cos[c + d*x]]*(4*(a + b*Cos[c + d*x])*Sin[c + d*x] + (2*a*(a + b)*Sq 
rt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan 
[(c + d*x)/2]], (-a + b)/(a + b)] + 4*(a - 2*b)*b*Sqrt[(a + b*Cos[c + d*x] 
)/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + 
b)/(a + b)] - 4*a^2*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x])) 
]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 16*b^2*Sqrt 
[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[ 
Tan[(c + d*x)/2]], (-a + b)/(a + b)] + a*b*Sqrt[Cos[c + d*x]/(1 + Cos[c + 
d*x])]*Sec[(c + d*x)/2]*Sin[(3*(c + d*x))/2] + 2*a^2*Sqrt[Cos[c + d*x]/(1 
+ Cos[c + d*x])]*Tan[(c + d*x)/2] - a*b*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x 
])]*Tan[(c + d*x)/2])/(b*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])])))/(8*d*Sqr 
t[a + b*Cos[c + d*x]])
 
3.7.3.3 Rubi [A] (verified)

Time = 1.88 (sec) , antiderivative size = 435, normalized size of antiderivative = 0.99, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.560, Rules used = {3042, 3300, 27, 3042, 3540, 25, 3042, 3532, 3042, 3288, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3300

\(\displaystyle \frac {\int \frac {2 \cos (c+d x) b^2+a \cos ^2(c+d x) b+a b}{2 \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{2 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {2 \cos (c+d x) b^2+a \cos ^2(c+d x) b+a b}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {2 \sin \left (c+d x+\frac {\pi }{2}\right ) b^2+a \sin \left (c+d x+\frac {\pi }{2}\right )^2 b+a b}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3540

\(\displaystyle \frac {\frac {\int -\frac {b a^2-2 b^2 \cos (c+d x) a+b \left (a^2-4 b^2\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}+\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {b a^2-2 b^2 \cos (c+d x) a+b \left (a^2-4 b^2\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {b a^2-2 b^2 \sin \left (c+d x+\frac {\pi }{2}\right ) a+b \left (a^2-4 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3532

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a^2 b-2 a b^2 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+b \left (a^2-4 b^2\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {b \left (a^2-4 b^2\right ) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {a^2 b-2 a b^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3288

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a^2 b-2 a b^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a^2 b \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-a b (a+2 b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx-\frac {2 \sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a^2 b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-a b (a+2 b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a^2 b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}-\frac {2 b \sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {-\frac {2 \sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}-\frac {2 b \sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}+\frac {2 b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d}}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

input
Int[Cos[c + d*x]^(3/2)*Sqrt[a + b*Cos[c + d*x]],x]
 
output
(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(2*d) + (-1/2*( 
(2*(a - b)*b*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + 
d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - 
Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*b*Sqr 
t[a + b]*(a + 2*b)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/ 
(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c 
+ d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*Sqrt[a + b] 
*(a^2 - 4*b^2)*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c 
+ d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 
- Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d)/b + (a* 
Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]))/(4*b)
 

3.7.3.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3300
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x] 
)^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[1/(d*(m + n))   I 
nt[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a^2*c*d*( 
m + n) + b*d*(b*c*(m - 1) + a*d*n) + (a*d*(2*b*c + a*d)*(m + n) - b*d*(a*c 
- b*d*(m + n - 1)))*Sin[e + f*x] + b*d*(b*c*n + a*d*(2*m + n - 1))*Sin[e + 
f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[0, m, 2] && LtQ[-1, n, 2] && 
NeQ[m + n, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3532
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[C/b^2   Int[Sqrt[a + b*Sin[e + f*x]] 
/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[1/b^2   Int[(A*b^2 - a^2*C + b*(b* 
B - 2*a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] & 
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3540
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[e + f 
*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[1/(2*d)   Int[(1/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 
 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + 
 f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a 
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
3.7.3.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1687\) vs. \(2(396)=792\).

Time = 7.06 (sec) , antiderivative size = 1688, normalized size of antiderivative = 3.85

method result size
default \(\text {Expression too large to display}\) \(1688\)

input
int(cos(d*x+c)^(3/2)*(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/4/d*(-EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+ 
c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*co 
s(d*x+c)^2-EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d 
*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b 
*cos(d*x+c)^2+2*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))* 
((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^ 
(1/2)*a^2*cos(d*x+c)^2-8*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b) 
)^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos( 
d*x+c)))^(1/2)*b^2*cos(d*x+c)^2-2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/ 
(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1 
+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^2+4*EllipticF(cot(d*x+c)-csc(d*x+c),(-( 
a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+ 
c)/(1+cos(d*x+c)))^(1/2)*b^2*cos(d*x+c)^2+2*b^2*cos(d*x+c)^3*sin(d*x+c)-2* 
EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1 
+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*cos(d*x+c) 
-2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b) 
/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x 
+c)+4*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*((a+cos(d* 
x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2* 
cos(d*x+c)-16*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))...
 
3.7.3.5 Fricas [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\int { \sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
integral(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(3/2), x)
 
3.7.3.6 Sympy [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\int \sqrt {a + b \cos {\left (c + d x \right )}} \cos ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \]

input
integrate(cos(d*x+c)**(3/2)*(a+b*cos(d*x+c))**(1/2),x)
 
output
Integral(sqrt(a + b*cos(c + d*x))*cos(c + d*x)**(3/2), x)
 
3.7.3.7 Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\int { \sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(3/2), x)
 
3.7.3.8 Giac [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
Timed out
 
3.7.3.9 Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\int {\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {a+b\,\cos \left (c+d\,x\right )} \,d x \]

input
int(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(1/2),x)
 
output
int(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(1/2), x)